I LANCI Generalità

I lanci consistono nel lanciare un particolare attrezzo il più lontano possibile nel rispetto delle norme del Regolamento Internazionale

I lanci inclusi nel programma olimpico si dividono in:

- lanci in cui agiscono forze dirette prevalentemente in senso rettilineo: peso e giavellotto
- lanci in cui agiscono forze dirette prevalentemente in senso rotatorio: disco, martello (e peso)

Gli attrezzi

IIIasciii	

Peso kg 7.250 kg 4

Disco kg 2 kg 1

Martello kg 7.250 kg 4

Giavellotto g 800 g 600

Generalità sulle discipline di lancio

- discipline acicliche con carattere di forza veloce
- la forza massima è la base della forza veloce
- discipline con alto coefficiente di difficoltà

Lo scopo

la più alta velocità di uscita dell'attrezzo

peso : m. 22.00 ≈ 14.00 m/s

■ disco : m. 70.00 ≈ 24.00 m/s

martello : m. 82.00 ≈ 27.00 m/s

giavellotto : m. 88.00 ≈ 30.00 m/s

I fattori fisici che influenzano i lanci:

- Velocità d'uscita
- Angolo d'uscita
- Altezza d'uscita
- Proprietà aerodinamiche dell'attrezzo (massa e forma) e forze esterne (es: forza e direzione del vento)
- Forza di gravità
- Velocità di rotazione dell'attrezzo attorno al proprio asse

velocità d'uscita

è il fattore che maggiormente influenza la lunghezza del lancio

esempio: influenza delle variazioni della velocità d'uscita di + 0.5 m/s sulla performance

•	valori ottimali	disciplina	variaz		influer sulla p	erform	nance
			(m/s)	(%)	(m)	(%)	
•	30 m/s	giavellotto	0.5	1.6	4	5	
•	24 m/s	disco	0.5	2.0	3	4	
•	27 m/s	martello	0.5	1.7	2	2.3	
•	14 m/s	peso	0.5	3.6	1.4	6	

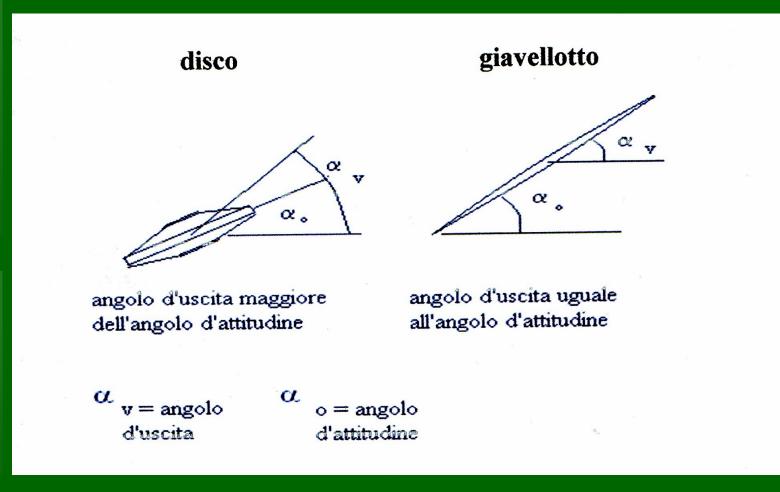
angolo d'uscita

esempio: influenza delle variazioni dell'angolo d'uscita di 2° sulla performance

	valori ottimali	disciplina	varia (°)	zione (%)	influe sulla pe (m) ('		ance
			()	(/0)	(111) (70)	
•	34°	giavellotto	2	5.2	1.0	1.3	
•	35-37°	disco	2	5.5	0.3	0.4	
•	44°	martello	_ 2	4.7	0.6	0.7	
	42°	peso	2	4.7	0.07	0.3	

Spesso questi valori non sono rispettati (particolarmente nel lancio del peso e del martello): si ricerca un angolo d'uscita più piatto perché così si hanno condizioni più favorevoli per il lavoro muscolare delle gambe, del tronco e del braccio.

<u>altezza d'uscita</u>


Dipende:

- dalla costituzione fisica dell'atleta.
- dalla posizione del corpo

<u>proprietà aerodinamiche</u> <u>dell'attrezzo</u> (massa e forma) <u>e</u> <u>forze esterne</u> (es: forza e direzione del vento)

La resistenza dell'aria è trascurabile nel peso e poco significativa nel martello; il vento contrario favorisce il disco ed il vento da dietro favorisce il giavellotto usato attualmente (a differenza dei vecchi veleggiatori")

- nel disco l' angolo d'attitudine deve essere inferiore di 10-15 gradi rispetto all'angolo d'uscita;
- nel giavellotto l'asse longitudinale deve coincidere con la traiettoria di volo.

velocità di rotazione dell'attrezzo intorno al proprio asse

- assicura una migliore stabilità in volo nel disco e giavellotto;
- crea turbolenze ed influisce negativamente nel martello.

Accelerazione dell'attrezzo da parte dell'atleta

dipende da:

- forza esercitata
- tempo di attuazione della forza
- ampiezza di attuazione della forza

L'esigenza fondamentale di applicare la potenza massimale all'attrezzo necessita per la sua realizzazione di distinguere dal punto di vista biomeccanico, due parti di movimento:

- accelerazione preliminare del sistema "atleta-attrezzo"
- accelerazione principale impressa all'attrezzo per mezzo dell'accelerazione e arresto di determinate parti del corpo

accelerazione preliminare del sistema "atleta-attrezzo"

questa parte del gesto deve realizzare le condizioni di lavoro ottimali a vantaggio della fase seguente di accelerazione principale:

- posizioni appropriate delle parti del corpo tra loro e in rapporto all'attrezzo
- la più grande velocità ottimale dell'insieme atleta-attrezzo

accelerazione principale impressa all'attrezzo per mezzo dell'accelerazione e arresto di determinate parti del corpo

- il lavoro delle gambe è fondamentale: le gambe contribuiscono all'azione motrice del sistema e realizzano la base per i movimenti del tronco e delle braccia.
- la decelerazione del sistema precedentemente accelerato (appoggio della gamba di spinta e della gamba di arresto) crea le condizioni favorevoli per l'accelerazione principale dell'attrezzo: i segmenti del movimento posti all'inizio della catena cinetica (gambe, tronco) giocano un ruolo di innesco per le parti del corpo che seguono (parti distali): l'accelerazione e la decelerazione delle parti del corpo più grandi, permettono di imprimere un'accelerazione accresciuta agli elementi motori più leggeri che seguono.

Principi generali che regolano i lanci

- l'esecuzione motoria dei lanci è un movimento di tutto il corpo
- dalla partenza alla fine, il movimento deve essere in continua accelerazione fino al raggiungimento della più alta velocità controllabile nel momento di concludere il lancio
- dalla partenza alla fine, il movimento deve essere il più possibile orizzontale (non devono esserci spinte verso l'alto durante lo spostamento in pedana)
- la parte superiore del corpo deve rimanere indipendente dagli arti inferiori durante tutta la fase di "rincorsa" e partecipare attivamente al lancio solo nell'ultima fase

- l'accelerazione finale è la risultante delle tensioni muscolari sviluppate secondo una catena ben precisa, che partendo dalle gambe, passa dalle anche, al tronco ed infine viene trasmessa, attraverso gli arti superiori all'attrezzo
- nel finale l'azione di lancio deve cominciare dal "macinamento- spinta" del piede destro che spinge avanti l'anca corrispondente
- tutta la velocità acquisita durante lo spostamento deve essere sfruttata completamente attraverso una ferma azione di puntello della gamba sinistra
 - si deve far percorrere all'attrezzo il più lungo "spazio accelerante" possibile
- il baricentro deve rimanere sopra la base di appoggio durante l'applicazione di forza

Fasi dei lanci

- nei quattro lanci si possono distinguere 5 fasi fondamentali:
 - fase di preparazione: posizione di partenza; preliminari
 - fase di traslocazione: fase primaria di accelerazione del sistema "lanciatore-attrezzo"
 - fase di ammortizzazione: posizione finale (power-position)
 - fase dell'accelerazione finale
 - fase di recupero: il corpo viene frenato per evitare il nullo di pedana

Caratteristiche

- poichè la velocità ha un ruolo dominante e per accelerare la massa dell'attrezzo sono necessarie elevate forze muscolari, le discipline dei lancio vengono classificate come discipline di forza veloce
- non esiste una tecnica esecutiva di un gesto senza un controllato intervento di forza; non esiste una manifestazione di forza senza tecnica
- la qualità dei lanci è determinata da una opportuna coordinazione dei movimenti parziali (singole fasi) e dalla realizzazione di tensioni (nelle catene biomeccaniche)

Primati del mondo

	peso	disco	giavellotto	Martello
Maschi	Barnes (USA) 23.12	Shult (DDR) 74.08	Zelezny (CZE) 98.48	Sedykh (URS) 86.74
Femmine	TI (TIDO)	Reisch (DDR) 76.80	Mendez (CUB) 71.54	Melinte (ROM) 76.04